正弦定理和余弦定理公式

导读设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。正弦定理公式及其推论正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。正弦定理公式、余弦定理公式一、正弦定理公式a/sinA=...

设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。

正弦定理和余弦定理公式

正弦定理公式及其推论

正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。

正弦定理公式、余弦定理公式

一、正弦定理公式

a/sinA=b/sinB=c/sinC=2R。

注1其中“R”为三角形△ABC外接圆半径。下同。

注2正弦定理适用于所有三角形。初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。

二、正弦定理推论公式

1、(1)a=2RsinA;

(2)b=2RsinB;

(3)c=2RsinC。

2、(1)a:b=sinA:sinB;

(2)a:c=sinA:sinC;

(3)b:c=sinB:sinC;

(4)a:b:c=sinA:sinB:sinC。

注多用于“边”、“角”间的互化。

三角板的边角关系也满足正、余弦定理

3、由“a/sinA=b/sinB=c/sinC=2R”可得:

(1)(a+b)/(sinA+sinB)=2R;

(2)(a+c)/(sinA+sinC)=2R;

(3)(b+c)/(sinB+sinC)=2R;

(4)(a+b+c)/(sinA+sinB+sinC)=2R。

正弦定理推论公式

4、三角形ABC中,常用到的几个等价不等式。

(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。

(2)“a+b>c”等价于“sinA+sinB>sinC”。

(3)“a+c>b”等价于“sinA+sinC>sinB”。

(4)“b+c>a”等价于“sinB+sinC>sinA”。

5、三角形△ABC的面积S=(abc)/4R。其中“R”为三角形△ABC的外接圆半径。

部分三角函数公式

余弦定理公式及其推论

余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

一、余弦定理公式

(1)a^2=b^2+c^2-2bccosA;

(2)b^2=a^2+c^2-2accosB;

(3)c^2=a^2+b^2-2abcosC。

注余弦定理及其推论适用于所有三角形。初中数学,三角形内角的余弦值等于“邻比斜”仅适用于直角三角形。

余弦定理公式及其推论公式

二、余弦定理推论公式

1、cosA=(b^2+c^2-a^2)/2bc;

2、cosB=(a^2+c^2-b^2)/2ac;

3、cosC=(a^2+b^2-c^2)/2ab。

三角形的正弦定理和余弦定理公式及其推论常用来解三角形。对于某些复杂题,需要把正弦定理和余弦定理及其推论综合起来运用。

例题已知三角形△ABC中,角A=30°,a=2,求三角形△ABC外接圆的面积。

解:设三角形ABC外接圆半径为R,

根据正弦定理得:a/sinA=2R,

所以R=a/(2sinA)=2,

所以,三角形ABC的外接圆面积S=4π。

余弦定理的公式有哪些

三角形余弦定理公式:a^2=b^2+c^2-2bccosA。

三角形余弦定理:一条边的平方,等于另两条边的平方和,减去另两条边与夹角余弦成绩的2倍。

左边是一条边a,右边的余弦是a对应的角A,右边的边都是b和c,这样记可能容易点。

比如一个三角形ABC中,∠C=90°。则AB叫做斜边,AC叫做∠A的邻边,BC叫做∠A的对边,所以cosA=AC/AB,sinA=BC/AB,同理cosB=BC/AB,sinB=AC/AB。

cos公式的其他资料:

它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。

利用余弦定理,可以解决以下两类有关三角形的问题:

(1)已知三边,求三个角。

(2)已知两边和它们的夹角,求第三边和其他两个角。

余弦定理有三个公式,三角形ABC中,如果∠A,∠B,∠C的对边分别用a、b、c来表示那么就有如下关系:

a =b +c -2bccosA。

b =a +c -2accosB。

c =a +b -2abcosC。

余弦定理应用例题:

例如:

已知△ABC的三边之比为5:4:3,求最大的内角。

解:设三角形的三边为a,b,c且a:b:c=5:4:3。

由三角形中大边对大角可知:∠A为最大的角。

由余弦定理:

cosA=0。

所以∠A=90°。

免责声明:本文由用户上传,如有侵权请联系删除!